УДК 539.3:621.22

А.А. ВОДКА, аспирант НТУ «ХПИ»; **А.И. ТРУБАЕВ**, канд. техн. наук; доц. НТУ «ХПИ»

МЕТОДИКА ПРОГНОЗИРОВАНИЯ РЕСУРСА БОЛТОВЫХ СОЕДИНЕНИЙ РАБОЧИХ КОЛЕС ГИДРОТУРБИН

Разработана методика оценки ресурса болтовых соединений рабочих колес гидротурбин. Проведен анализ собственных колебаний ротора, а также определены нагрузки, действующие на рабочее колесо, и вызванное ими напряженно-деформированное состояние болтовых соединений на переходных режимах работы гидроагрегата. Получены численные значения ресурса для болтового соединения гидротурбины ПЛ40-В700.

Ключевые слова: ресурс, болтовое соединение, гидротурбина, многоцикловая усталость.

Введение. Болтовые соединения широко используются в технике, в том числе гидротурбиностроении, и являются одним из наиболее распространенных способов разборного соединения деталей машин. Широкий спектр применения болтовых соединений ставит задачу о рациональном выборе их типоразмеров и конструкций. В библиографической статье [1] приведены ссылки более чем на 700 работ (опубликованных в период с 1990 по 2002 год), которые посвящены проблемам расчета, проектирования и использования резьбовых соединений. Несмотря на широкое раскрытие вопроса, проблемы анализа прочности и прогноза надежности болтовых соединений остаются актуальными. Эксплуатация болтовых соединений гидротурбин связана с рядом особенностей: наличием коррозионной среды (воды), существенной предварительной затяжкой, значительными напряжениями, возникающие вследствие действия крутящего момента и динамического гидравлического усилия на валу турбины. Следует отметить, что гидротурбины активно используются в процессе регулирования суточных пиков потребления, так как время выхода гидроагрегата (ГА) на рабочий режим составляет несколько минут, что делает ГА подходящим инструментом в решении такой задачи, однако это в свою очередь приводит к числу пусков/остановок, превышающему проектные значения. Отказы болтовых соединений зачастую носят постепенный характер и вызваны коррозионно-усталостными процессами (рис. 1).

Постановка задачи. Адекватная оценка ресурса болтовых соединений является актуальной задачей, представляющей практический интерес. Поэтому целью работы является создание методики прогнозирования ресурса болтовых соединений рабочих колес гидротурбин.

Методика оценки ресурса. Авторами в последние несколько лет ведутся исследования по моделированию напряженного состояния и оценке ресурса болтовых соединений рабочих колес гидротурбин. На основе серии работ, посвященной данной тематике [2–7], удалось сформулировать методику оценки ресурса таких соединений (рис. 2), включающей в себя следующие этапы:

- **ШАГ** 1. Построение полной 3D модели ротора ΓA без учета болтового соединения.
 - ШАГ 2. Определение собственных частот и форм колебаний ротора ГА.
- **ШАГ 3.** Выявление зависимости от времени крутящего момента M(t) и осевого усилия $P_{\rm oc}(t)$ на валу ГА на переходных режимах (пуск/остановка/сбросы нагрузки/переход в режим синхронного компенсатора и др.).

© А.А. Водка, А.И. Трубаев, 2013

Рис. 1 – Болты крепления рабочего колеса гидротурбины (M110×4) после эксплуатации в течение 30 лет

Для реализации этого этапа существует два способа: а) с помощью натурных замеров соответствующих параметров на реальном ГА (такой способ подходит ДЛЯ оценки pecypca находящегося в эксплуатации ГА), либо масштабированием полученных ранее экспериментальных данных для подобных турбин и перенесением их на исследуемый ГА; б) определение крутящего момента M(t) и осевого усилия $P_{oc}(t)$ на валу ГА на переходных режимах математического моделирования.

ШАГ 4. Проведение спектрального анализа зависимостей M(t) и $P_{\rm oc}(t)$ и сопоставления их частот с собственными

частотами ротора ГА.

ШАГ 5. Если частоты нагружения значительно ниже собственных частот ротора, полученных на шаге 2, то задачу об определении динамического напряженнодеформированного состояния (ДНДС) можно рассматривать в квазистатической постановке (т.е. как последовательность статических задач; коэффициент динамичности такой системы близок к единице). Далее переходим к шагу 6. Если же частоты нагружения сопоставимы с первой собственной частотой, то задачу об определении ДНДС необходимо рассматривать в полной постановке. Переходим к шагу 8.

ШАГ 6. Построение 3D модели фрагмента ротора Γ А, содержащего исследуемое болтовое соединение. Модель болтового соединения выполняется с учетом контактного взаимодействия сопрягаемых деталей в области головки болта и в резьбе. Так же следует учесть в модели предварительную затяжку болтового соединения. Особое внимание следует уделить моделирования напряженного состояния под головкой болта и в резьбе, именно в этих местах наблюдаются наибольшие напряжение, а так же градиенты напряжений достигают наибольших значений.

ШАГ 7. Провести расчет ДНДС возникающего от действия M(t) и $P_{oc}(t)$ в болтовом соединении в квазистатической постановке. Ожидаемые места наибольших напряжений: первый виток резьбы и галтель под головкой болта. Перейти к шагу 10.

ШАГ 8. Построить модель ротора ГА, содержащую исследуемое болтовое соединение. Модель должна быть выполнена с учетом контактного взаимодействия между сопрягаемыми деталями, так и в резьбе.

ШАГ 9. Провести расчет ДНДС возникающего от действия M(t) и $P_{oc}(t)$ в болтовом соединении в динамической постановке. Ожидаемые места наибольших напряжений: первый виток резьбы и галтель под головкой болта.

ШАГ 10. Построение модели накопления повреждаемости при многоцикловой усталости (линейная/нелинейная, детерминированная или вероятностная). При построении модели необходимо учесть влияние коррозионной среды (пресная вода), естественной деградации механических свойств материала, выбрать модель учета средних напряжений цикла.

ШАГ 11. Получение и обработка статистики об эксплуатации ГА, относительно числа переходных процессов в единицу времени. Определение математического

ожидания, дисперсии и корреляционной функции частоты переходных процессов. **ШАГ 12.** Определение ресурса и его вероятностных характеристик.

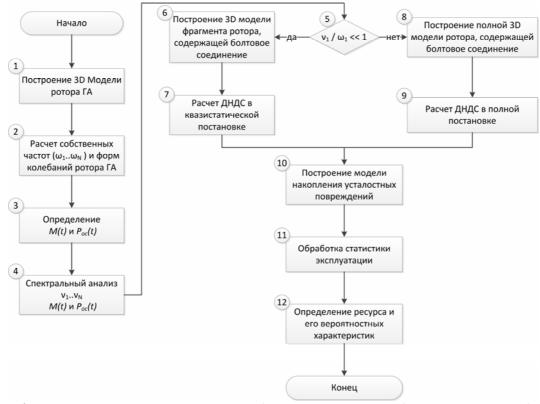


Рис. 2 – Блок схема методики оценки ресурса болтовых соединений рабочих колес гидротурбины

Применение методики на примере болтовых соединений рабочего колеса гидротурбины ПЛ40-В700 (ДнепроГЭС-II). На первом шаге были построены геометрическая и конечно-элементная 3D модель ротора ГА (рис. 3a, δ).

На шаге 2 были определены частоты и формы собственных колебаний с учетом и без учета кориолисовых сил (КС). Так на рис. 4 показаны первые 6 собственных форм, а в табл. — собственные частоты. Как видно из таблицы, влияние КС является незначительным, а первая собственная частота более чем в три раза превышает частоту вращения ротора, что свидетельствует о том, что при запуске/остановке ротор ГА не проходит через резонанс. Следует отметить, что частоты, приведенные в табл. выполнены без учета влияния присоединенной массы воды, поэтому их значения можно считать верхней оценкой частот реального ГА.

Собственные частоты ротора гидротурбины

Таблица

No	Частота, Гц		Расхождение,	No
	без КС	с КС	%	рис. 4
1	6.86	6.67	2.8	а
2	7.75	7.74	0.1	б
3	10.02	9.86	1.6	в
4	11.37	11.37	0.0	г
5	20.09	20.01	0.4	ð
6	24.78	24.78	0.0	e



Рис. 3 — Модели ротора гидротурбины: a — геометрическая; δ — конечно-элементная

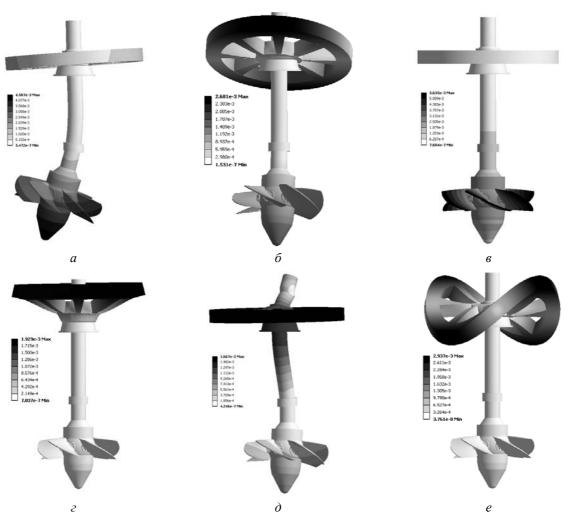


Рис. 4 – Собственные формы колебаний ротора гидротурбины

На шаге 3 для оценки характера переходного процесса предлагается воспользоваться результатами натурных испытаний подобных гидроагрегатов Шардаринской ГЭС (турбоагрегаты ПЛ 661-ВБ-500, р. Сырдарья, Казахстан) [8–9], в процессе которых были измерены ряд параметров, среди которых осевое усилие и крутящий момент на валу турбины. Т.к. рассматриваемый в данной работе гидроагрегат также поворотно-лопастного типа, то на основании теории подобия между зависимостями осевого усилия и вращающего момента от времени на валу турбин выполняются соотношения:

$$M^{\mathcal{I}}(t) = \frac{H^{\mathcal{I}}}{H^{\mathcal{I}\mathcal{I}}} \left(\frac{D^{\mathcal{I}}}{D^{\mathcal{I}\mathcal{I}}}\right)^{3} M^{\mathcal{I}\mathcal{I}}(t); \tag{1}$$

$$P_{\text{oc}}^{\Pi}(t) = \frac{H^{\Pi}}{H^{\text{III}}} \left(\frac{D^{\Pi}}{D^{\text{III}}}\right)^{2} P_{\text{oc}}^{\text{III}}(t), \tag{2}$$

где $M^{\rm III}(t)$ — вращающий момент в гидроагрегате Шардаринской ГЭС; $M^{\rm II}(t)$ — вращающий момент в гидроагрегате ДнепроГЭС-II; $P_{\rm oc}^{\rm III}(t)$ — осевое усилие в гидроагрегате Шардаринской ГЭС; $P_{\rm oc}^{\rm II}(t)$ — осевое усилие в гидроагрегате ДнепроГЭС-II; $H^{\rm III}$ — напор Шардаринской ГЭС; $H^{\rm II}$ — напор ДнепроГЭС-II; $D^{\rm III}$ — диаметр рабочего колеса Шардаринской ГЭС; $D^{\rm II}$ — диаметр рабочего колеса ДнепроГЭС-II.



Рис. 5 — График зависимости крутящего момента M(t) и осевого усилия $P_{\rm oc}(t)$ от времени в процессе работы гидроагрегата

График полученных зависимостей осевого усилия и вращающего момента на валу гидротурбины ПЛ 40-В-700 приведен на рис. 5.

Анализ спектра M(t) и $P_{oc}(t)$ на шаге 4 показывает, что первая гармоника нагружения значительно ниже, чем первая собственная частота, поэтому переходим к шагу 6.

Исследование НДС на шаге 6. Низкие частоты нагружения относительно собственных частот ротора позволяют проводить рассмотрение задачи об исследовании динамического НДС в квазистатической постановке, что значительно упрощает

математическую модель. Так как осевое усилие и крутящий момент по валу ротора можно считать постоянными, то целесообразно выделить фрагмент фланца ротора и корпуса рабочего колеса соответствующие одному болту (рис. 6a) и учесть циклическую симметрию относительно оси вращения (рис. 6b). КЭ модель болта построена с учетом резьбы. Профиль резьбы построен согласно ГОСТ 9150-81, ГОСТ 8742-81 и ГОСТ 24705-81, однако, для упрощения нанесения КЭ сетки, резьба выполнена как тело вращения без учета спирали (рис. 6b).

Граничные условия реализованы следующим образом: верхний край вала защемлялся, а на нижнем краю прикладывалось усилие, эквивалентное действующему осевому и крутящему моменту. Также следует отметить, что между фланцем вала,

корпусом рабочего колеса и болтом в КЭ модели учтено контактное взаимодействие. Для ускорения сходимости численного метода и предотвращения движения фрагментов конструкции как жесткого целого использовались упругие двухузловые КЭ.

В качестве граничного условия, моделирующего затяжку болта, задавалось начальное смещение (натяг) головки болта относительно опорной поверхности на величину Δ . Этот параметр является удобным с инженерной точки зрения, так как в дальнейшем его можно легко пересчитать как в температуру нагрева болта при тепловой затяжке, так и в угол поворота болта при использовании силовой затяжки холодным способом.

На шаге 7 были получены распределения перемещений и напряжений по болту в момент времени t=100 (рис. 7) при начальном натяге $\Delta=0,15$ мм, который соответствует удлинению при затяжке $\delta=0,106$ мм. Зонами концентрации напряжений являются первый виток резьбы и галтель меньшего радиуса под головкой болта.

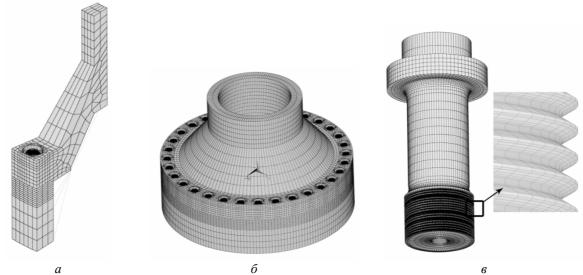


Рис. 6 – KЭ модели: a – сектора вала, приходящегося на один болт; δ – сектора вала с учетом циклической симметрии; ϵ – болта

Результаты расчетов НДС, возникающего на первом витке резьбы в процессе работы гидроагрегата в зависимости от величины начального натяга, показаны на рис. 8.

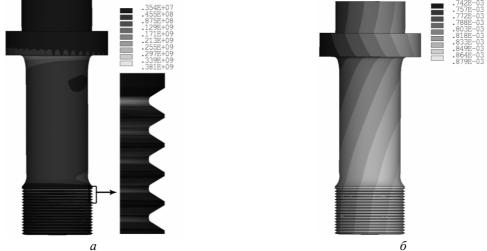


Рис. 7 — Напряженное состояние, возникающее в болте в момент времени t=100 с: a — эквивалентные напряжения по Мизесу, Па; δ — суммарные перемещения, м

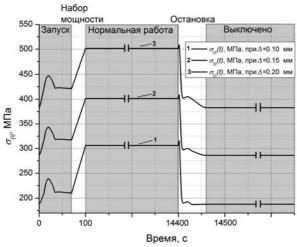


Рис. 8 – График зависимости эквивалентных напряжений по Мизесу на первом витке резьбы от времени при различных уровнях начального натяга Δ в процессе работы гидроагрегата

Построение модели накопления усталостных повреждений на шаге 10 в простейшем случае можно выполнить на основе уравнения кривой Веллера, с помощью которой можно определить число циклов до возникновения макротрещины при заданном уровне напряжений. Параметры кривой усталости определяются на основе испытания образцов на усталость, которые регламентированы ΓOCT 25.502-79. Уравнение кривой Веллера может быть записано в виде

$$N = N_0 \left(\frac{\sigma_R}{\sigma_a}\right)^m, \quad \sigma_a > \sigma_R, \qquad (3)$$

где N — число циклов до разрушения; N_0 — база испытания; σ_R — предел выносливости материала при коэффициенте асимметрии цикла $R = \sigma_{\text{max}}/\sigma_{\text{min}}$; σ_a — амплитуда напряжений цикла, $\sigma_a = (\sigma_{\text{max}} - \sigma_{\text{min}})/2$; m — параметр наклона кривой.

В рассматриваемом болте вследствие геометрической формы и внешних нагрузок реализуется сложное напряженное состояние. В виду простоты применения в работе в качестве эквивалентного напряжения были приняты напряжения по Мизесу.

При оценке ресурса важным фактом является то, что пределы выносливости деталей в значительной мере отличаются от пределов стандартных образцов. Это обусловлено влиянием различных конструкционных, технологических и эксплуатационных факторов, которые могут приводить как к повышению, так и к снижению сопротивления усталости. Наиболее существенное влияние оказывает следующие факторы: абсолютные размеры поперечного сечения (масштабный фактор); качество обработки поверхности; состояние поверхностного слоя; эксплуатационные факторы (коррозия, температура, частота нагружения и др.) [10–11].

На предел выносливости рассматриваемого болтового соединения в процессе эксплуатации влияют практически все выше перечисленные факторы: масштабный фактор ($\varepsilon=0,35$), состояние поверхности ($\beta=0,8$), коррозионная среда – пресная вода ($\gamma=0,46$), фреттиниг коррозия в резьбе ($\alpha=0,55$). Таким образом, предел выносливости болта при симметричном цикле (R=-1) может быть записан в виде (4).

$$\sigma_{-1\pi} = \alpha \beta \gamma \varepsilon \sigma_{-1}. \tag{4}$$

В виду того, что рассматриваемые болтовые соединения имеют существенную предварительную затяжку, в болтах реализуются циклы со значительными положительными коэффициентами асимметрии. Для оценки долговечности при таких циклах, в общем случае, необходимо экспериментально определить σ_R , однако на сегодняшний день для сталей широко применяется модель Гербера:

$$\sigma_{R_{\pi}} = \sigma_{-l_{\pi}} \left[1 - \left(\frac{\sigma_{m}}{\sigma_{B}} \right)^{2} \right], \tag{5}$$

где $\sigma_{R_{\rm A}}$ — предел выносливости детали при коэффициенте асимметрии цикла R; σ_m — среднее напряжение цикла, $\sigma_{\rm B}$ — предел временной прочности материала. Таким

образом, уравнение кривой усталости может быть записано в виде (6), а время до возникновения макротрещины (T_r) из уравнения (7), где ν – частота процесса, Γ ц:

$$N = N_0 \left(\frac{\sigma_{R_{\text{A}}}}{\sigma_a} \right)^m, \quad \sigma_a > \sigma_{R_{\text{A}}}; \tag{6}$$

$$T_r = \frac{N_0}{\nu} \left(\frac{\sigma_{R_{\pi}}}{\sigma_a} \right)^m, \quad \sigma_a > \sigma_{R_{\pi}}. \tag{7}$$

Обработка статистики эксплуатации указанного ГА на шаге 11 по данным, которые были предоставлены ПАО «Укргидроэнерго», показывает, что средняя частота пусков/остановов составляет 32,6 пусков в месяц или ~1 пуск в день. Среднее квадратическое отклонение составляет 12,6 пусков в месяц. Таким образом, коэффициент вариации составляет 0,386. Относительно большой коэффициент вариации говорит о том, что частота запусков является случайной величиной, и применение детерминированных моделей к определению ресурса дает лишь среднее значение и не учитывает разброс относительно него.

В результате проведенных численных исследований на шаге 7 была определена зависимость величины средних напряжений цикла σ_m и амплитуды напряжений цикла σ_a от величины затяжки болта (рис. 9a). С помощью этой зависимости и уравнений (4)–(7) на шаге 12 получена зависимость ресурса от затяжки болта (рис. 9b). Как известно [10–11], увеличение среднего напряжения цикла приводит к снижению ресурса, что хорошо согласуется с полученными результатами.

Выводы. В работе предложена методика оценки ресурса болтовых соединений рабочих колес гидротурбин. Определено НДС, возникающее на переходных режимах, а также дана оценка ресурса болтового соединения гидроагрегата ПЛ40-В700 (ДнепроГЭС-II). В связи со значительной статистической неопределенностью частоты пусков/остановок, а также других переходных режимов, необходимо продолжить развитие вероятностных моделей накопления усталостных повреждений, учитывающих процесс естественной деградации характеристик сопротивления усталости.

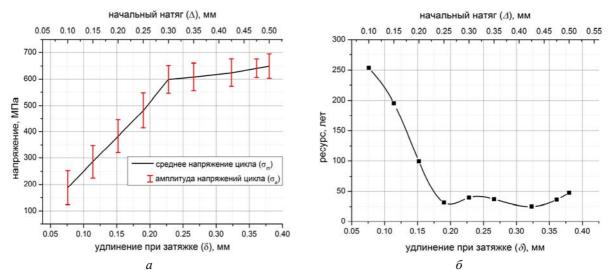


Рис. 9 — Зависимости: a — средних напряжений цикла σ_m и амплитуды напряжений цикла σ_a от величины затяжки болта; δ — зависимость числа лет до возникновения макротрещины от величины начального натяга

Список литературы: 1. Mackerle, J. Finite element analysis of fastening and joining: A bibliography (1990–2002) [Text] / Jaroslav Mackerle // International Journal of Pressure Vessels and Piping. – 2003. – № 80. – Р. 253-271. 2. Водка, А.А. Исследование напряженно-деформированного состояния болтовых соединений рабочего колеса гидротурбины [Текст] / А.И. Трубаев, А.С. Степченко, А.А. Водка // Динаміка і міцність машин. Вісник НТУ «ХПІ»: 3б. наук. праць. – Х.: НТУ «ХПІ», 2011. – № 52. – С. 34-41. 3. Водка, А.А. Исследование напряженно-деформированного состояния болтовых соединений рабочего колеса гидротурбины в условиях лабораторного эксперимента [Текст] / А.А. Водка, А.И. Трубаев. А.С. Степченко // Надежность и долговечность машин и сооружений. – 2011. – № 34. – С. 155-162. 4. Водка, А.А. Исследование напряженного состояния и ресурса болтовых соединений рабочих колес гидротурбин на переходных режимах [Текст] / А.А. Водка, А.С. Степченко, А.И. Трубаев // Международный научно-технический журнал «Теоретическая и прикладная механика». – 2013. – № 28. - С. 34-41. 5. Водка, А.А. Оценка ресурса болтовых соединений рабочих колес гидротурбин на переходных режимах [Текст] / А.А. Водка, А.С. Степченко, А.И. Трубаев // Вибрации в технике и технологиях. -2012. -№ 3(68). - С. 66-72. **6.** Bodка, A.A. Разработка экспериментальной лабораторной модели для имитации напряженно-деформированного состояния болтовых соединений гидротурбины [Текст] / А.А. Водка, А.И. Трубаев, А.С. Степченко // Тр. междунар. науч.-техн. конф. «Прочность материалов и элементов конструкций» (28–30 сент. 2010 г.). – К.: Ин-т проблем прочности им. Г.С. Писаренко НАН Украины, 2011. – С. 414-421. 7. *Водка, А.А.* К вопросу о прочности и надежности болтовых соединений гидротурбин [Текст] / А.А. Водка // Механіка та машинобудування. - Х.: НТУ «ХПІ», 2012. - № 1. - С. 41-50. **8.** Гидромеханические переходные процессы в гидроэнергетических установках [Текст] / Под ред. Г.И. Кривченко. - М.: Энергия, 1975. - 367 с. 9. Владиславлев, Л.А. Вибрация гидроагрегатов гидроэлектрических станций [Текст] / Л.А. Владиславлев. – М.: Энергия, 1972. - 176 с. 10. Серенсен, С.В. Несущая способность и расчет деталей машин на прочность. Руководство и справочное пособие [Текст] / С.В. Серенсен, В.П. Когаев, Р.М. Шнейдерович. - М.: Машиностроение, 1975. – 488 с. 11. Трощенко, В.Т. Сопротивление усталости металлов и сплавов [Текст]: справочник в 2-х ч. / В.Т. Трощенко, Л.А. Сосновский – К.: Наук. думка, 1987. – Ч. 1. – 504 с.; Ч. 2. – 1302 с.

Поступила в редколегию 15.01.13

УДК 539.3:621.22

Методика прогнозирования ресурса болтовых соединений рабочих колес гидротурбин [Текст] / А.А. Водка, А.И. Трубаев // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. — Х.: НТУ «ХПІ», 2013. — № 13(987). — С. 140-148. — Бібліогр.: 11 назв. — ISSN 2078-774X.

Розроблено методику оцінки ресурсу болтових з'єднань робочих коліс гідротурбін. Проведено аналіз власних коливань ротора, а так само визначені навантаження, що діють на робоче колесо, і викликаний ними напружено-деформований стан болтових з'єднань на перехідних режимах роботи гідроагрегату. Отримані чисельні значення ресурсу для болтового з'єднання гідротурбіни ПЛ40-В700.

Ключові слова: ресурс, болтове з'єднання, гідротурбіна, багатоциклова втома.

The paper deals with development of a methodology of the life-time prediction of the bolted connection of the water turbine impeller. The developed method is applied to the bolted connection of turbine PL40-V700. Also in the paper the natural vibrations of the rotor has been analyzed, as well as the load and the resulting stress-strain state in transient modes in water turbine has been obtained.

Keywords: life-time prediction, bolted connection, water turbine, high cycle fatigue.